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1 Introduction

Recently, initiated by [1, 2], there has been some interest in extending the AdS/CFT

correspondence to non-relativistic field theories in d spatial dimensions that exhibit an

anisotropic scale invariance (t, xi) → (λzt, λxi) parametrised by the dynamical critical ex-

ponent z ≥ 1, and corresponding to a dispersion relation of the form ω ∼ kz. While

there is a plethora of non-relativistic symmetry algebras, some of them are subalgebras of

the relativistic conformal (or AdS isometry) algebra. Systems exhibiting such a symmetry

therefore potentially have bulk gravitational duals that can be realised as suitable defor-

mations of AdS. The simplest of these are the Lifshitz and Schrödinger space-times Lifz [3]

and Schz [1, 2], whose metrics in Poincaré-like coordinates take the form

Lifz : ds2 = −dt2

r2z
+

1

r2

(

dr2 + d~x2
)

Schz : ds2 = −dt2

r2z
+

1

r2

(

−2dtdξ + dr2 + d~x2
)

(1.1)

where d~x2 = (dx1)2 + . . . (dxd)2. Subsequently, various geometrical aspects of such a non-

relativistic correspondence were investigated e.g. in [4]–[16].1 Nevertheless it is probably

fair to say that the holographic dictionary and the issue of holographic renormalisation in

these space-times are not yet nearly as well understood as in the AdS case.

In the usual AdS/CFT correspondence, while for most practical intents and purposes

it is sufficient to work in Euclidean signature (an option not readily available for the Schz

metrics) or perhaps on the Minkowskian Poincaré patch, certain conceptual issues of the

correspondence are greatly clarified by formulating the Lorentzian correspondence in global

1For an updated account of these developments, and references to the CFT side of the story, see also [17].
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coordinates (see e.g. [18–20]). For these reasons, and in order to highlight the analogies

respectively differences between AdS (z = 1) and z > 1, it is important to gain a better

understanding of the global geometry of the Lifshitz and Schrödinger space-times.

For example, while Lifz and Schz are geodesically complete at r → 0 for all z ≥ 1, for

z > 1 the detailed behaviour of geodesics near r = 0 differs somewhat from the AdS case

(r = 0 is “harder to reach”), and this may well have implications for holography and, in

particular, for an appropriate notion of “boundary” in this context.

At the “other end” r → ∞, for all z ≥ 1 the above Poincaré-like coordinate system (1.1)

is incomplete in the sense that e.g. timelike geodesics can reach r = ∞ in finite proper time.

The implications of this run-away behaviour of the geodesics, i.e. whether this indicates

a genuine pathology of the space-time (geodesic incompleteness, singularity) or a mere

coordinate singularity, requiring one to extend the space-time beyond r = ∞, depend on

the behaviour of the geometry as r → ∞. For example, it is of course well known that in the

z = 1 AdS case the above Poincaré coordinates cover only one-half of the complete (non-

singular and maximally symmetric) AdS space-time. On the other hand it has already been

noted in [3, 17] that for all z > 1 the Lifshitz geometries are singular as r → ∞ in the sense

of pp-curvature singularites (infinite tidal forces) and are thus geodesically incomplete. For

a discussion of the possible implications of this for the Lifz / CFT correspondence see [17].

The situation is somewhat more interesting for the Schrödinger metrics Schz. Our

starting point is the observation that in this case qualitatively (for the precise statement

see (2.5) below) the tidal forces of causal geodesics behave as

Schz : Tidal Forces ∝ (z − 1)r4−2z . (1.2)

In particular, while these space-times are geodesically incomplete for 1 < z < 2, there are

no infinite tidal forces not only for the AdS case z = 1 but also for all z ≥ 2, and there

are freely falling observers that reach r = ∞ in finite proper time without encountering

any singularity. One thus needs to provide them with a map and extend the space-time

beyond r = ∞.

In this note we will address this issue and obtain a global, geodesically complete,

coordinate system for z = 2. We also show that the Schrödinger space-times for z > 2

admit no global timelike Killing vector fields, so that a global metric will necessarily be

time-dependent.

Taking our clue from global AdS, where global time corresponds to the generator

P0 + K0 of the isometry algebra (K0 is a special conformal transformation), we oberve

that only the z = 2 Schrödinger algebra has a potential counterpart of this generator,

namely H + C, where H is the generator of t-translations (in the above Poincaré-like

coordinates) and C is the special conformal generator of the z = 2 algebra. By considering

the combination H + ω2C we are led to the metric

ds2 = −dT 2

R4
+

1

R2
(−2dTdV − ω2(R2 + ~X2)dT 2 + dR2 + d ~X2) . (1.3)

which has a number of remarkable properties. First of all, this coordinate system, in which

the metric simply has the form of a plane wave deformation of the Poincaré-like metric (1.1),
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is indeed geodesically complete for ω > 0 and in this sense provides global coordinates

for the Schz=2 space-time (for ω = 0 the metric reduces to the incomplete Poincaré-

patch metric (1.1)). Moreover, this metric is closely related to the harmonic trapping

of non-relativstic CFTs that plays an important role in the non-relativistic operator-state

correspondence [21] and whose holographic implementation was investigated in [4, 5]. Our

derivation of the above metric shows that precisely for z = 2 (and for AdS z = 1) the

plane wave deformation (1.3) of the Schz Poincaré metric (1.1) that accomplishes this

trapping is just a coordinate transformation, namely the one that relates the Poincaré time

Hamiltonian H = ∂t to the trapped Hamiltonian H+ω2C = ∂T . The geodesic completeness

of this coordinate system can be physically understood in terms of the trapping of geodesics

induced by the harmonic oscillator term ω2(R2 + ~X2) in the metric. Moreover, the spatial

harmonic oscillator provides an IR cut-off that is the counterpart of the topological spatial

IR cut-off (space is a sphere) provided by AdS global coordinates.

To set the stage, in section 2 we briefly recall some elementary aspects of the geometry

(isometries, geodesics) of the Lifz and Schz metrics in the Poincaré-like coordinates (1.1).

In section 3.1, we motivate the introduction of H + C as the generator of global time by

analogy with AdS, and we show that the Schrödinger space-times for z 6= 1, 2 have no

global timelike Killing vectors. We obtain the desired coordinate transformation and the

metric in global coordinates in section 3.2, and in section 3.3 we establish the geodesic

completeness and discuss the other results mentioned above. In section 3.4 we briefly

look at some related issues for pure AdS (z = 1) and make some comments on the case

z > 2. Finally, In section 4, we analyse the Klein-Gordon equation in global coordinates

and compare with the Poincaré-patch analysis of [1, 2] and the Hamiltonian analysis of [5].

2 Schrödinger and Lifshitz space-times in Poincaré coordinates

In this section, to motivate our investigation, and as a preparation for the considerations of

section 3, we briefly summarise some basic facts about the geometry of the Schrödinger and

Lifshitz space-times, whose metrics in Poincaré-like coordinates (that we will henceforth

simply refer to as Poincaré coordinates) have been given in (1.1). Obviously for z = 1 these

reduce to the (d+ 2)- (respectively (d+ 3)-) dimensional AdS Poincaré metric, and we will

consider the range z ≥ 1.

In addition to the manifest translational isometries in t and ~x and spatial rotations

these space-times have the characteristic anisotropic dilatation symmetry

Lifz : (r, ~x, t) → (λr, λ~x, λzt)

Schz : (r, ~x, t, ξ) → (λr, λ~x, λzt, λ2−zξ) .
(2.1)

These comprise the so-called Lifshitz algebra [3]. The larger Schrödinger isometry algebra

of Schz contains, in addition, Galilean boosts and null translations in ξ, the latter playing

the role of the central extension or mass operator of the Galilean algebra. Moreover, for

z = 2 there is one extra special conformal generator C which will turn out to play an

important role in the considerations of section 3.
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One can use the conserved momenta E, ~P (and Pξ) corresponding to the manifest t, ~x

(and ξ) translational isometries of the metrics (1.1) to reduce the geodesic equations to a

single radial (effective potential) equation

Lifz : k =
ṙ2

r2
+ r2 ~P 2 − r2zE2

Schz : k =
ṙ2

r2
+ r2(~P 2 − 2EPξ) + r4−2zP 2

ξ

(2.2)

(k = 0,∓1 for null, timelike and spacelike geodesics). We will first compare and contrast

the qualitative behaviour of causal AdS geodesics (z = 1) as r → 0 with that for z > 1,

and then consider the (for our purposes more crucial) behaviour as r → ∞.

In the AdS case Lifz=1 it follows from (2.2) that timelike geodesics require E2 − ~P 2 ≡
M2 > 0, and that these have a minimal radius rmin = 1/M , while null geodesics (ṙ =

±Mr2) can reach r = 0 at infinite values of the affine parameter. Since ṫ = Er2, it also

follows that r(t) = ±(E/M)t, so that lightrays can reach the boundary r = 0 and bounce

back again to a stationary observer in finite coordinate time t.

The behaviour of Lifz>1 causal geodesics is qualitatively similar to the AdS case, with

one perhaps crucial difference: namely, timelike geodesics still have a minimal radius rmin >

0, but here so do null geodesics unless ~P = 0 (since r2 ~P 2 dominates over r2zE2 as r → 0

unless ~P = 0). Thus for z > 1 only purely radial null geodesics reach r = 0, and up to a

reparametrisation rz → r these are identical to null geodesics in AdS2.

The Schz>1 space-times exhibit a somewhat stronger deviation from the AdS be-

haviour, since here neither timelike nor null geodesics ever reach r = 0. This is due to

the fact that for z > 1 the dominant term in the effective potential is the positive term

r4−2zP 2
ξ unless Pξ = 0, and that there are neither timelike geodesics, nor null geodesics

with ṙ 6= 0, for Pξ = 0.

Now let us look at the behaviour as r → ∞. It is easy to see that for all z ≥ 1 the

Poincaré coordinate system (1.1) is incomplete. Indeed, it follows immediately from (2.2)

that for z ≥ 1 the leading large r behaviour of null (and timelike) geodesics as functions

of the affine parameter τ is

Lifz : r(τ) ∝ |τ − τ0|−1/z

Schz : r(τ) ∝ |τ − τ0|−1 ∀z ≥ 1
(2.3)

so that r → ∞ for τ → τ0. Generically, i.e. unless some of the constants of motion are

set to zero, all other coordinates also approach infinity (for Schz at exactly the same rate

as r(τ)).

In order to assess the implications of this, one needs to look more closely at the

geometry of the space-time at r → ∞. The AdS case z = 1 is of course well understood:

r = ∞ is only a coordinate singularity, Poincaré coordinates cover only one-half of the

complete AdS space-time, and it is possible to introduce global coordinates that cover the

entire space-time. It is also easy to see that (for any z) all scalar curvature invariants are

constant (and in particular finite at r = ∞). This is a consequence of the homogeneity

of the Lifshitz and Schrödinger space-times, in particular the dilatation isometry (2.1),
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since any scalar curvature invariant can only be a function of r, upon which dilatation-

invariance implies that the invariant is actually constant. However, as is well known, e.g.

in the context of pp-waves, all of whoses scalar curvature invariants are identically zero,

this does not by itself imply that the space-time should necessarily be considered to be

non-singular: freely falling observers may nevertheless experience infinite tidal forces (and

therefore a physical singularity), in the form of divergent parallel propagated orthonormal

frame components of the Riemann tensor.

The explicit calculation of the tidal forces is pretty straightforward in the case of

Lifshitz metrics, and it has already been noted in [3] that they are singular in this sense

for r → ∞. One finds that for null geodesics (and up to a cosmological constant term for

timelike geodesics) the tidal forces are proportional to

Lifz : Tidal Forces ∝ (z − 1)r2z . (2.4)

This is in complete agreement with the result reported in [17, foootnote 5] and shows that

the Lifz space-times are geodesically incomplete and singular at r → ∞ for all z > 1.

For the Schrödinger metrics the corresponding calculation is slightly more involved but

the result is also somewhat more interesting and qualitatively quite different from (2.4).

The relevant parallel propagated orthonormal frame components R
(τ)
(α)(τ)(β) of the curvature

tensor are

Schz : Tidal Forces:















R
(τ)
(i)(τ)(j) = −(1 + P 2

ξ (z − 1)r(τ)4−2z)δij

R
(τ)
(ξ)(τ)(ξ) = −(1 + 2P 2

ξ z(z − 1)r(τ)4−2z sin(τ)2)

R
(τ)
(r)(τ)(r) = −(1 + 2P 2

ξ z(z − 1)r(τ)4−2z cos(τ)2)















∝ (z − 1)r4−2z

(2.5)

with (τ) referring to the tangent of the timelike geodesic, i.e. eα
(τ) = ẋα. While, as ex-

pected, z = 1 is non-singular, this result, that can also be deduced from the calculation

of geodesic deviation in general Siklos space-times in [22] and [23], shows some perhaps

surprising features.

Namely, while a static (non-geodesic) observer may have have been inclined to believe

that the metric is asymptotically AdS for any z > 1 as r → ∞, since the r−2zdt2 term

appears to be subleading, this is an illusion caused by that observer’s acceleration. In-

deed (2.5) shows that there is a singularity in the form of infinite tidal forces at r = ∞ for

1 < z < 2, experienced by all timelike and null geodesics (since for these Pξ 6= 0), and the

situation is therefore very much like that of the Lifshitz space-times for z > 1. For z ≥ 2,

however, the tidal forces again remain finite as r → ∞.2 Mutatis mutandis the above

result is also valid for the tidal forces experienced by null geodesics; the first (cosmological

constant) term does not contribute in that case. Thus for z ≥ 2 causal geodesics reach

r = ∞ at finite values of the affine parameter without encountering any singularity.

2For z > 2, the dangerous region may appear to be r → 0, but this is deceptive since (as discussed

above) timelike and null geodesics have a non-zero minimal radius rmin > 0.
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3 Global coordinates for z = 2 Schrödinger space-times

The above analysis points to the necessity of constructing suitable coordinates that cover

the space-time region beyond r = ∞. In this section we will obtain a global, geodesically

complete, coordinate system for Schz=2 and describe some of its properties. We also make

some comments on the (qualitatively quite different) case z > 2.

3.1 Towards global coordinates

We begin by recalling the situation for AdS, i.e. Schz=1. In this case, it is well known how

to construct global coordinates (T,R, angles) in terms of which the (d + 3)-dimensional

AdS metric takes the form

AdS : ds2 = −(1 + R2)dT 2 + (1 + R2)−1dR2 + R2dΩ2
d+1 . (3.1)

The most straightforward way to find these global coordinates is to make use of the

embedding of the unit curvature radius (d + 3)-dimensional AdS space-time into R
2,d+2

with coordinates ZA, A = 0, . . . , d + 3 and metric

ds2 = −(dZ0)2 + (dZ1)2 + . . . + (dZd+2)2 − (dZd+3)2 (3.2)

as the (universal covering space of the) hyperboloid

− (Z0)2 + (Z1)2 + . . . + (Zd+2)2 − (Zd+3)2 = −1 . (3.3)

Writing this as

(Z0)2 + (Zd+3)2 = 1 + (Z1)2 + . . . + (Zd+2)2 ≡ 1 + R2 (3.4)

suggests the parametrisation

Z0 = (1 + R2)1/2 sin T Zd+3 = (1 + R2)1/2 cos T , (3.5)

which identifies ∂T with the generator of rotations M0,d+3 in the timelike (Z0, Zd+3)-plane.

This indeed gives rise on the nose to the global metric (3.1).

Since the Schz metric (1.1) differs from the AdS Poincaré metric only by the charac-

teristic first term −dt2/r2z, when seeking global coordinates for Schz, one’s first thought

may perhaps be to simply employ the usual transformation from AdS Poincaré coordinates

ds2 =
−dt2 + d~y2 + dr2

r2
, (3.6)

to global coordinates. However, since e.g. the relation between global and Poincaré time is

tan T =
2t

1 + r2 + ~y2 − t2
, (3.7)

this results in a fairly complicated metric that explicitly depends on all of the coordinates.

In particular, none of the Schrödinger isometries of the metric will be manifest and, regard-

less of whether or not this procedure leads to a geodesically complete coordinate system

– 6 –
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for z ≥ 2, it appears to provide no additional insight into the geometry of Schrödinger

space-times.

Another possibility is to try to find a deformation of the AdS embedding (3.3) that

breaks the conformal algebra down to its Schrödinger sub-algebra. Unfortunately, it is

not hard to see that such an embedding of Schz into one dimension higher does not exist:

any hypersurface invariant under the Schrödinger algebra turns out to be automatically

invariant under the entire conformal algebra, and leads to the standard AdS hyperboloid.

However, there is yet another aspect of the AdS construction that does turn out to

generalise to the Schrödinger case, and does provide global coordinates, but only for z = 2.

Namely, under the usual identification of the generators MAB of so(d + 2, 2) with the

generators (Pµ,Kµ,Mµν ,D) of the relativistic conformal algebra conf(d+1, 1), such that e.g.

P0 = ∂t , K0 = t(r∂r + yi∂yi) +
1

2
(t2 + r2 + ~y2)∂t (3.8)

in standard Poincaré coordinates (3.6), the definition of AdS global time is equivalent to

the identification

∂T = P0 + K0 . (3.9)

Thus global AdS time “diagonalises” the modified Hamiltonian operator P0 + K0. In the

Schrödinger algebra, the role of the Hamiltonian is played by the lightcone Hamiltonian

H ≡ P+, and the Poincaré coordinates (1.1) are such that this Hamiltonian is diagonalised,

H = ∂t. Now, generically the Schrödinger algebra does not possess any counterpart of the

special conformal generators Kµ. Precisely for z = 2, however (for which the Schrödinger

algebra can be characterised as the subalgebra of conf(d + 1, 1) that commutes with the

lightcone momentum P−), there is one extra special conformal generator, namely C ≡ K−.

In Poincaré coordinates C takes the form

C = t(t∂t + r∂r + xi∂xi) +
1

2
(r2 + ~x2)∂ξ (3.10)

with

[H,C] = D [D,C] = 2C [D,H] = −2H , (3.11)

where

D = 2t∂t + r∂r + xi∂xi (3.12)

is the generator of dilatations (2.1) for z = 2. Thus for z = 2, there is a natural candidate

counterpart of the AdS global Hamiltonian P0 + K0, namely

P+ + K− = H + C . (3.13)

As a first check on this we can calculate the norm of this Killing vector in the Poincaré-

coordinates of (1.1),

||H + C||2 = −1 − ~x2

r2
− (1 + t2)2

r4
≤ −1 . (3.14)

Here the constant term −1 arises from the cross-term between ∂t and the r2-term in

C (3.10). Thus unlike H = ∂t, whose norm goes to zero as r → ∞, this Killing vector is

– 7 –
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everywhere timelike in the Poincaré patch and thus has a chance of providing a well-defined

notion of time also beyond the Poincaré patch. We will show below that diagonalising this

generator of the isometry algebra indeed leads to global time (and other global coordinates)

for z = 2.

Before turning to that, let us briefly look at the situation for z 6= 1, 2. In that case, C

is absent but one could e.g. consider a linear combination H + aD + bP−, P− = ∂ξ, of the

Killing vectors that are invariant under spatial rotations. Such Killing vectors necessarily

become spacelike somewhere inside the Poincaré patch if a 6= 0, while the norm of H + bP−

still goes to zero as r → ∞ (in any case, replacing H by H + bP− just amounts to passing

from (t, ξ) to some linear combinations of t and ξ). Including the remaining Killing vectors

(rotations, translations, boosts) in this analysis does not improve the situation. We can

therefore conclude that, unlike for z = 2, the Schrödinger space-times Schz for z > 2 have

no global timelike Killing vector fields. We will come back to this result in section 3.4.

3.2 Global coordinates for z = 2

Since the z = 2 algebra has the central element P− = ∂ξ, we seek new coordinates

(t, r, ~x, ξ) 7→ (T,R, ~X, V ) (3.15)

in which H + C (3.13) and P− are simultaneously diagonal,

H + C = ∂T , P− = ∂V . (3.16)

This is accomplished by the coordinate transformation

t = tan T , r =
R

cos T
, ~x =

~X

cos T

ξ = V +
1

2

(

R2 + ~X2
)

tan T

(3.17)

(chosen to also keep the metric as diagonal as possible - no off-diagonal terms in the new

radial coordinate R - see also section 3.4 for further comments on this transformation),

and in these coordinates the metric reads

Schz=2 : ds2 = −
(

1

R4
+

(

1 +
~X2

R2

))

dT 2 +
1

R2

(

−2dTdV + dR2 + d ~X2
)

= −dT 2

R4
+

1

R2

(

−2dTdV − (R2 + ~X2)dT 2 + dR2 + d ~X2
)

.

(3.18)

This metric has several noteworthy properties. First of all, it is indeed geodesically com-

plete, i.e. all geodesics can be extended to infinite values of their affine parameter. We

postpone a detailed proof of this assertion to section 3.3, but already here draw attention

to the fact that a crucial role in establishing this is played by the harmonic oscillator poten-

tial R2+ ~X2 induced by the isotropic plane wave metric −2dTdV −(R2+ ~X2)dT 2+dR2+d ~X2

in (3.18) which replaces the flat Poincaré coordinate metric −2dtdξ + dr2 + d~x2. In section

3.3 we will also discuss other issues related to this term and its interpretation in terms

– 8 –
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of the harmonic trapping [21] of non-relativistic conformal field theories. It may also be

useful to note that, as in [7], the above form (3.18) of the z = 2 metric can also be obtained

from pure AdS (in plane wave coordinates (3.32)) by a TST-transformation.3

It is perhaps quite surprising that the above transformation between Poincaré and

global cooordinates is so much simpler than its AdS counterpart. For instance, instead of

the AdS relation (3.7) one has the simple relation t = tan T (3.17) between Poincaré and

global time for z = 2. The success of the simple coordinate transformation (3.19) can be

traced back or attributed to the fact (we will briefly recall in section 3.4) that it is precisely

the coordinate transformation that exhibits the conformal flatness of isotropic plane waves.

One remarkable (and related) feature of the global metric (3.18) is that it differs from

the Poincaré-metric (1.1) only by a single term, namely the plane wave harmonic oscillator

frequency term ∼ (dT )2. This is in marked contrast to the global AdS metric (3.1) which

appears to bear no resemblance whatsoever to the Poincaré metric. This statement can

even be sharpened somewhat by introducing a real (and without loss of generality positive)

parameter ω into the coordinate transformation (3.17), via

t = ω−1 tan ωT , r =
R

cos ωT
, ~x =

~X

cos ωT

ξ = V +
ω

2

(

R2 + ~X2
)

tan ωT .

(3.19)

In terms of these coordinates the metric now takes the form

Schz=2 : ds2 = −dT 2

R4
+

1

R2

(

−2dTdV − ω2(R2 + ~X2)dT 2 + dR2 + d ~X2
)

. (3.20)

Thus this metric interpolates between the Poincaré metric for ω = 0 (for which (3.19) oblig-

ingly reduces to the identity transformation) and the global metric for ω = 1. The metric

is actually geodesically complete for any ω > 0 since (3.20) can be obtained from (3.18) by

the scaling (R,T, ~X, V ) → (
√

ωR,ωT,
√

ω ~X, V ). This happens to look very much like the

z = 2 dilatation symmetry (2.1) in Poincaré coordinates, but acting on global coordinates

this is not an isometry but rather the transformation that turns (3.18) into (3.20).

To better understand what is going on here, note that the coordinate transforma-

tion (3.19) diagonalises not H + C but H + ω2C, so that it is not too surprising that one

finds the Poincaré metric for ω = 0 and the global metric (3.18) for ω = 1. Thus any

non-trivial linear combination of H and C (with a relative positive coefficient) gives rise

to a global Hamiltonian.

While this explains the form (3.20) of the z = 2 global metric, this begs the question

if one cannot adopt a similar procedure in the AdS case, diagonalising not P0 +K0 (which,

as we know, gives rise to global coordinates) but P0 +λ2K0 and finding a metric depending

on λ that interpolates between the Poincaré metric for λ = 0 and the global metric for

λ = 1. At first this may perhaps appear unlikely precisely because the global metric (3.1)

is so unlike the Poincaré metric, but nevertheless this is indeed possible. For notational

3We are grateful to a referee for stressing this to us.
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simplicity, we exhibit this 1-parameter family of interpolating metrics only in the (3 + 1)-

dimensional (d = 1) case,

AdS : ds2 = −(λ2 + R2)dT 2 + (λ2 + R2)−1dR2 + R2

(

dΘ2 + cos2
(

λ2π

2
− λΘ

)

dΦ2

)

.

(3.21)

The explicit coordinate transformation, which we will not give here in detail (instead

of (3.7) one now has

tan λT =
2λt

1 + λ2(r2 + ~y2 − t2)
(3.22)

etc.) shows that (λT, λΘ, λΦ) are standard angles. Thus, on the one hand the above metric

reduces to the global metric (3.1) for λ = 1, while on the other hand for λ → 0 the time-

coordinate becomes non-compact and the spatial sphere decompactifies to Euclidean space,

so that one obtains the standard Poincaré metric (3.6) with R = 1/r and {yi} = {Θ,Φ}.

3.3 The global metric: harmonic trapping and geodesic completeness

There is one aspect of the global Schz=2 metric constructed above that merits particular

attention, and that we already alluded to above, namely its relation to the harmonic

trapping of non-relativistic CFTs [21] and its geometric realisation [4, 5]. Recall that we

were led to the metric (3.18) by analogy with the AdS case and by the realisation that

there is an essentially unique counterpart of the global AdS Hamiltonian P0 + K0 in the

z = 2 Schrödinger algebra, namely the generator P+ + K− ≡ H + C.

Non-relativistic CFT, on the other hand, provides an a priori completely different

rationale for studying the modified Hamiltonian H → H + C, because the non-relativistic

operator-state correspondence [21] relates primary operators of the Schrödinger algebra

(those that commute with C and Galilean boosts) with energy eigenstates of H + C.

Since essentially the effect of C is to add a harmonic potential to the Hamiltonian, this

corresponds to putting the system into a harmonic trap.

In [5], the question was investigated how this trapping could be realised holographically

via a deformation of the (Poincaré patch) Schrödinger metric (1.1). The deformation that

was found to accomplish a harmonic trapping both in the spatial directions of the CFT

and in the holographic radial coordinate r turns out (when specialised to z = 2)4 to

agree precisely with the global metric (3.20). Our derivation of this metric shows that

precisely for z = 2 (and for z = 1, see section 3.4) the required deformation of the metric

that accomplishes this trapping is actually a pure gauge deformation, namely a coordinate

transformation that relates the Poincaré time generator H = ∂t to the trapping (or global)

time generator H + ω2C = ∂T .

The plane wave deformation (3.20) of the Poincaré metric (1.1) achieves this trap-

ping deformation of the Hamiltonian for the same reason that the massless Klein-Gordon

equation for a scalar field Φ in a pp-wave metric background

ds2 = −2dtdξ − U(~x, t)dt2 + d~x2 (3.23)

4The emphasis in [5] (and also in [4]) was on z = 1 and the attempt to find a pure AdS DLCQ dual

realisation of systems with z = 2 Schrödinger symmetry.
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reduces to the Schrödinger equation with a potential V = mU/2 in a sector with fixed

lightcone momentum = mass,

2Φ = 0 , i∂ξΦ = mΦ ⇒ i∂tΦ = − 1

2m
∆Φ +

m

2
UΦ . (3.24)

For an isotropic harmonic oscillator potential, this is precisely the plane wave metric that

appears in (3.20), and we will also encounter this trapping of the scalar field in the analysis

of the Klein-Gordon equation in the metric (3.20) in the next section.

We will now show that the completeness of the coordinate system (3.19) is a conse-

quence of the harmonic trapping of geodesics induced by this coordinate transformation. To

study the effect of the harmonic oscillator term ω2(R2+ ~X2) in the metric on the behaviour

of geodesics, let us compare the z = 2 Poincaré radial effective potential equation (2.2)

k =
ṙ2

r2
+ r2(~P 2 − 2EPξ) + P 2

ξ (3.25)

with the corresponding equation one obtains from the global metric (3.20), namely

k =
Ṙ2

R2
+ R2(P 2 − 2EPV ) + P 2

V + ω2P 2
V R4 . (3.26)

A minor difference between (3.25) and (3.26) is the fact that the constant of motion de-

noted by P 2 in (3.26) arises not like the ~P 2-term in (3.25) as a consequence of translation

invariance (which (3.20) does not manifest), but rather as the conserved energy

P 2 ≡
(

1

R2

d

dτ
~X

)2

+ ω2P 2
V

~X2 (3.27)

associated to the transverse harmonic oscillator equations

1

R2

d

dτ

(

1

R2

d

dτ
~X

)

= −ω2P 2
V

~X . (3.28)

The main (and crucial) difference between (3.25) and (3.26), however, lies in the last term

ω2P 2
V R4 in (3.26). This term is negligible for R → 0, where (3.26) reduces to (3.25) which,

as we already discussed, is well-behaved as r → 0. On the other hand, since this term

dominates the large R behaviour, it prevents any geodesic (for any k) from reaching R = ∞
(even for infinite values of the affine parameter τ) unless ω = 0 (the Poincaré-patch metric,

which as we know is incomplete at large radius) or PV = 0. When PV = 0, the right-hand-

side of (3.26) is a sum of squares, and thus only spacelike geodesics k = +1 are possible.

When P 2 6= 0, there is again a maximal radius, Rmax = 1/P , and when PV = P = 0,

one has Ṙ = ±R, and thus these are the only geodesics that can reach R = ∞, but they

only do so for |τ | → ∞. The motion in the ~X-direction is bounded by the harmonic

oscillator potential, and that in the remaining (T, V )-directions is determined by that of

R and ~X and remains at finite values of the coordinates for all finite τ . This establishes

that, as claimed in section 3.2, the Schz=2 metric written in the coordinates (3.18), (3.20)

is geodesically complete.
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We close this section with one more remark on the significance of the trapping exhibited

by the global metric and the comparison with the global AdS metric (3.1). As is well known

the slices of constant R there have the topology R × Sd+1.

AdS : ds2|R=const = −(1 + R2)dT 2 + R2dΩ2
d+1

R→∞−→ R2(−dT 2 + dΩ2
d+1)

(3.29)

Thus the spatial part of the induced boundary metric has topology Sd+1, with finite vol-

ume, and thus in particular provides a topological IR cut-off for the boundary theory.

Without committing ourselves to a particular notion of boundary in the Schrödinger case,

roughly speaking the dual CFT should be considered to live on the slices of constant R

(the holographic coordinate) and V (dual to the particle number). The metric induced on

these slices can, via some constant rescalings of the coordinates, be written as

Schz=2 : ds2|R,V =const. ∼ −(1 + ω2| ~X |)2dT 2 + d ~X2

= −(1 + ω2ρ2)dT 2 + dρ2 + ρ2dΩ2
d−1 .

(3.30)

Thus in the Schrödinger case there is no topological cut-off, but the trapping in the spatial

directions ~X can be thought of as providing an IR cut-off through the harmonic potential.

In particular, the induced metric (3.30) has the standard form of the Newtonian limit

of a relativistic metric, here in a spherically symmetric gravitational harmonic oscillator

potential 1
2ω2ρ2. This Newtonian limit aspect of the metric of course fits in well with the

non-relativistic symmetries and potential dual dynamics.

3.4 Some comments on z = 1 and z > 2

While we have motivated the coordinate transformation (3.19) through the special (con-

formal) symmetries that the z = 2 Schrödinger algebra and metric possess, we can apply

it to the Schz metric for any z. If one does that, one finds the metric

Schz : ds2 = −(cos2 ωT )z−2 dT 2

R2z
+

1

R2

(

−2dTdV − ω2(R2 + ~X2)dT 2 + dR2 + d ~X2
)

.

(3.31)

Note that under this transformation the r−2z and r−2 terms of the Poincaré metric (1.1)

do not mix and transform separately into the corresponding terms in the metric (3.31).

Evidently this reduces to (3.20) for z = 2. The Schz Poincaré metric reduces to the

AdS metric either for z = 1 or if we set the coefficient of the r−2z-term to zero. Thus by

the same token, choosing z = 1 or setting the coefficient of the first term to zero in (3.31)

(the two choices are related by a simple shift of V ), we obtain a 1-parameter family of AdS

metrics, namely

AdS : ds2 =
1

R2

(

−2dTdV − ω2(R2 + ~X2)dT 2 + dR2 + d ~X2
)

. (3.32)

This is AdS in trapping coordinates, and that this AdS plane wave is indeed just pure AdS

in disguise was already noted in [23]5 and [7] (where it was obtained as a scaling limit of

5To see the relation between (3.17) and the coordinate transformation given in [23], note that the

Schwarzian derivative {tan t, t} = 2 is constant.
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AdS in global coordinates). Insight into this equivalence is provided by the observation

that the coordinate transformation (3.19) is such that

− 2dtdξ + d~x2 =
(

cos2 ωT
)−1

(

−2dTdV − ω2 ~X2dT 2 + d ~X2
)

, (3.33)

thus exhibiting the conformal flatness of the isotropic plane wave metric appearing on the

right hand side. Translated into plane wave lightcone Hamiltonians, it thus conformally

relates free particle (untrapped) and isotropic harmonic oscillator (trapped) dynamics.

Lifting this transformation to the AdS Poincaré-patch by adding the r-transformation

in (3.19) then provides a direct means of establishing (3.32), while the reasoning of section

3.1 provides the additional insight that this coordinate system diagonalises the action of

the modified lightcone Hamiltonian P+ + ω2K− and the lightcone momentum P−.

The metric (3.32) captures the R → ∞ (bulk) behaviour of the global Schz=2 met-

ric (3.20), and, in spite of its similarity to the Poincaré metric, for ω > 0 this is a

geodesically complete form of the AdS metric, the trapping harmonic oscillator poten-

tial preventing, as above, the geodesics from running off to infinity for finite values of the

affine parameter.

Let us conclude this section with some comments on the metric (3.31) for z > 2. Recall

from section 2 that also for z > 2 the Poincaré metric is incomplete but non-singular as

r → ∞. It remains to be seen if (3.31) provides a geodesically complete form of the metric

also in this case. A new (and perhaps at first disturbing) feature of (3.31) for z 6= 2 is

its T -dependence. However this is an unavoidable feature of global coordinates for z > 2.

Indeed, in section 3.1 we established the result that the Schrödinger space-times have no

global timelike Killing vector fields. Conversely this implies, just as in the case of de Sitter

space, that the metric in global coordinates will necessarily be time-dependent. While this

argument does not prove that (3.31) provides a geodesically complete coordinate system

for the z > 2 metrics, it shows that the time-dependence of (3.31) is no reason to dismiss

it. It may in any case be worth understanding if the dependence of the metric on global

time is reflected in some manner in non-relativistic scale-invariant field theories with z > 2

Schrödinger symmetry.

4 Scalar fields in global coordinates

In order to further study the effect of the trapping term ω2( ~X2 + R2) of the global met-

ric (3.20), we will look at scalar fields in this section and compare with what is know about

scalars fields in the Poincaré patch [1, 2], as well as with the analysis of [5].

Thus, consider the Klein-Gordon equation for a massive complex scalar field φ of

mass m0,
1√−g

∂µ

(√−ggµν∂νΦ
)

− m2
0Φ = 0 , (4.1)

in the global Schz=2 metric (3.20). We will consider modes ΦE,m with a definite (trapping)

energy E > 0 and mass (particle number) m > 0, i.e. eigenfunctions of H + a2C = ∂T and

P− = ∂V of the form

ΦE,m(R, ~X, T, V ) = e−iET e−imV φ(R, ~X) , (4.2)
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Introducing spherical coordinates {ρ, angles} in the ~X-plane, schematically expanding

φ(R, ~X) =
∑

YLϕL(ρ)φL(R) using spherical harmonics YL (eigenfunctions of the Lapla-

cian on Sd−1 with eigenvalue −L(L + d − 2)), one finds that the solutions to the sepa-

rated ρ-equation that are regular at the origin and well-behaved for ρ → ∞ are given by

the functions

ϕL,n(ρ) = e−
1
2ωmρ2

ρLLL−1+d/2
n (ωmρ2) , (4.3)

where the L
L−1+d/2
n are generalised Laguerre polynomials.

The resulting φL,n(R)-equation

φ′′
L,n − d + 1

R
φ′

L,n +

(

2Em − 4mω

(

n +
L

2
+

d

4

)

− ω2m2R2 − m2 + m2
0

R2

)

φL,n = 0 (4.4)

can then be reduced to a standard confluent hypergeometric differential equation

uF ′′(u) +

(

1 +
∆+ − ∆−

2
− u

)

F ′ −
(

n +
L

2
+

d

4
− E

2ω

)

F = 0 (4.5)

with the ansatz

φL,n(R) = e−
1
2uu∆+/2F (u) , (4.6)

where u = ωmR2 and

∆± =
d + 2

2
± 1

2

√

(d + 2)2 + 4(m2 + m2
0) , (4.7)

The leading asymptotic behaviour of the two linearly independent solutions φ± as R → ∞ is

φ±
L,n ∼ e±

1
2ωmR2

. (4.8)

This is the analogue of the behaviour of the Bessel functions Iν and Kν encountered in the

standard AdS/CFT correspondence and in the z = 2 Poincaré-patch analysis of [1, 2].

The leading behavior of the solution near R = 0 can also be deduced from the exact

solution, but can more readily be read off directly from (4.4) by neglecting the constant

terms and, in particular, the trapping term ω2m2R2. The behaviour of the solutions,

φL,n ∼ R∆± , (4.9)

thus necessarily becomes identical to that found in [1, 2] in terms of plane wave Fourier

modes φ~k
, namely

φ~k
∼ r∆± . (4.10)

We see that, as in the case of geodesics, the harmonic trapping term has little influence on

the dynamics near R = 0 but strongly modifies the behaviour as R → ∞. In particular,

the solution associated with φ− has the characteristic harmonic oscillator fall-off behaviour

Φ−
E,m ∼ e−

1
2ωm(R2 + ~X2) . (4.11)

To compare with the Hamiltonian analysis of [5], we just note that separating out the V -

dependence as in (4.2) turns the Klein-Gordon equation into a Schrödinger equation and

that after the unitary transformations that eliminates the first-order derivatives from (4.4)

and its counterpart for ϕL,n(ρ) the corresponding Hamiltonian agrees with the radial Hamil-

tonians written down in [5].
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